Chapter 1 Graphs and Isomorphisms

A simple graph G is an ordered pair (V, E) of vertices V = V(G) and edges E = E(G), where $E \subseteq \{\{u, v\} : u, v \in V, u \neq v\}$. $\{u, v\}$ can be simplified as uv.

|V| is order of G |E| is size of G

1: What are the order and the size of $G = (\{a, b, c, d\}, \{ab, bc, cd\})$.

Solution: order is 4, size is 3

Definition For $u, v \in V$ and $e \in E$, we define

- If $uv \in E$, then u and v are **adjacent** and called **neighbors**.
- If $v \in e$, then v and e are **incident**.
- Edges are **adjacent** if they have a vertex in common.

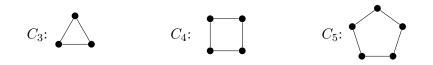
Drawing of G assigns point to V and curves to E, where the endpoints of uv are u and v.

If $V(G) = \emptyset$ then G is a *null* graph, sometimes called *empty graph*.

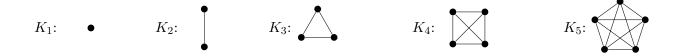
A path P_n of length n-1 has distinct vertices v_1, \ldots, v_n and edges $v_i v_{i+1}$ for all $1 \le i \le n-1$.

$$P_1: \begin{array}{c} \bullet \\ v_1 \end{array} \qquad P_2: \begin{array}{c} \bullet \\ v_1 \end{array} \qquad v_2 \end{array} \qquad P_3: \begin{array}{c} \bullet \\ v_1 \end{array} \qquad \bullet \\ v_1 \end{array} \qquad v_2 \qquad v_3$$

A cycle C_n of length n is obtained from $P_n = v_1, \ldots, v_n$ by adding edge $v_1 v_n$



A complete graph K_n has n vertices and for all $u, v \in V(K_n), uv \in E(K_n)$, i.e. all edges.



A complete bipartite graph $K_{n,m}$ has $V = \{u_1, \ldots, u_n\} \cup \{v_1, \ldots, v_m\}$ and $E = \{u_i v_j : 1 \le i \le n, 1 \le j \le m\}$.

$$K_{1,1}$$
: $K_{1,2}$: $K_{1,3}$: $K_{2,3}$: $K_{3,3}$:

2: What is $|E(P_n)|, |E(C_n)|, |E(K_n)|, |E(K_{n,m})|$?

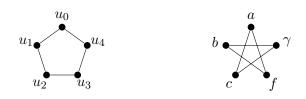
Solution: $|E(P_n)| = n - 1$, $|E(C_n)| = n$, $|E(K_n)| = \binom{n}{2}$, $|E(K_{n,m})| = nm$

©€\$© by Bernard Lidický

Graphs G and H are **isomorphic**, denoted by $G \cong H$ if there exists a bijective mapping $\varphi : V(G) \to V(H)$ such that

 $uv \in E(G)$ if and only if $\varphi(u)\varphi(v) \in E(H)$ for all $u, v \in V(G)$.

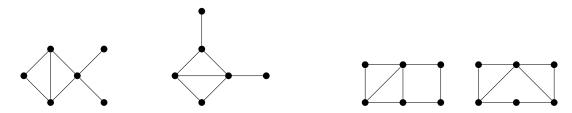
3: Find an isomorphims between the following two graphs



Solution: $\varphi(u_0) = a, \ \varphi(u_1) = c, \ \varphi(u_2) = \gamma, \ \varphi(u_3) = b, \ \varphi(u_4) = f$

Graphs G and H are **non-isomorphic** if they are not isomorphic.

4: Decide if the following pairs are isomorphic and justify your answer (i.e. find an isomorphism or say why they are non-isomorphic)



Solution: Both non-isomorphic. On the left, one has a vertex with 4 neighbors but the other does not. On the right, one has two adjacent vertices with 2 neighbors each, while the other does not.

5: Find all non-isomorphic graphs on 3 vertices.

Solution:

6: Determine the number of different isomorphisms there are of the graph $K_{3,3}$ to itself. These are called **automorphisms**. Try to define precisely what is automorphisms.

Solution: Automorphism is a bijective function $\varphi : V(G) \to V(G)$ such that $uv \in E(G)$ if and only if $\varphi(u)\varphi(v) \in E(G)$. $6 \cdot 2! \cdot 3! = 72.$

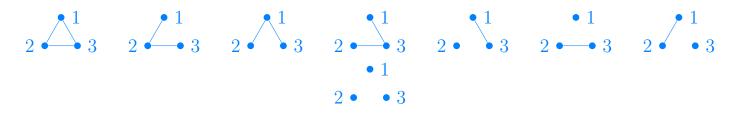
7: Find all non-isomorphic graphs on 4 vertices.

Solution: There are 11 of them.

Question: How many non-isomorphic graphs are there on n vertices?

8: Enumerate all graphs with $V = \{1, 2, 3\}$. (no isomorphism now)

Solution:



9: How many graphs are there with vertex set $V = \{1, 2, ..., n\}$? (do not consider isomorphism now)

Solution: For every pair, we can decide if it is an edge or not. Since we have $\binom{n}{2}$ potential edges, we have $2^{\binom{n}{2}}$ possible graphs.

10: If G is a graph on n vertices, how many ways (at most) are there to change V(G) to $\{1, 2, \ldots, n\}$?

Solution: n!

11: Using the previous exercises, what is the lower bound on the number of non-isomorphic graphs on n vertices? Examine how fast it grows?

Solution:

Now we use estimate $n! \leq n^n$ and take the logarithm. It gives

$$1\log_2 \frac{2^{\binom{n}{2}}}{n!} \ge \binom{n}{2}\log_2 2 - \log_2 n^n = \frac{1}{2}n^2 - \frac{1}{2}n - n\log n = \frac{n^2}{2}\left(1 - \frac{1}{n} - \frac{2\log_2 n}{n}\right)$$

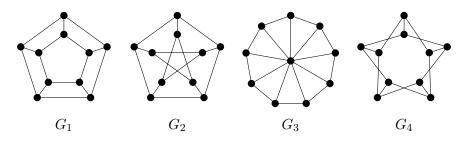
So it grows almost like $2^{n^2/2}$ in the limit. Certainly larger than 2^n .

The number of non-isomorphic graphs of orders $0, 1, 2, 3, 4, 5, \ldots$:

1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592, 50502031367952, 29054155657235488, 31426485969804308768, 64001015704527557894928, 245935864153532932683719776, 1787577725145611700547878190848 24637809253125004524383007491432768 See http://oeis.org/A000088

© () (S) by Bernard Lidický

12: Find which pairs of the following graphs are isomorphic.



Solution:

13: Give an example of three different (non-isomorphic) graphs of order 5 and size 5.

Solution:

14 Open problem: Find a polynomial time algorithm to determine if two graphs are isomorphic.

©©©© by Bernard Lidický